Answer:
95% Confidence interval for the mean
![142.8 \leq\mu\leq158.4](https://img.qammunity.org/2020/formulas/mathematics/college/jxn7lm86mxyjy4gn5ecya7lwkj1k5g734k.png)
Explanation:
We have to calculate a 95% confidence interval for the mean of a finite population.
The error is multiplied by the following finite population correction factor:
![cf=\sqrt{(N-n)/(N-1) }](https://img.qammunity.org/2020/formulas/mathematics/college/cgnqm57wtvrhl2qlma0zg6v7va8bi33y05.png)
The standard deviation can be estimated as
![\sigma=(s)/(√(n)) \sqrt{(N-n)/(N-1) } =(24.4)/(√(32) )* \sqrt{(200-32)/(200-1) }=3.963](https://img.qammunity.org/2020/formulas/mathematics/college/15qj89ib5d92qb1u4jz0wghbd5cby8rupg.png)
The 95% confidence interval has a z value of 1.96, so it becomes:
![M-z*\sigma_c\leq\mu\leq M+z*\sigma_c\\\\150.6-1.96*3.963\leq\mu\leq 150.6+1.96*3.963\\\\ 142.8 \leq\mu\leq 158.4](https://img.qammunity.org/2020/formulas/mathematics/college/s7sg71klxhqccxm9b7df2piscov6jj53rc.png)