Answer:
![Var[X+500+1.08Y]=Var[X+1.08Y]= 1^2 (8100) + 1.08^2 (10000) +2(950)=21664](https://img.qammunity.org/2020/formulas/mathematics/college/dr44y75cs3y8zegwmbrip7ojv1qvb69xd9.png)
Explanation:
Previous notation
Let X and Y random variables we have the following properties given:
Var(X) = 8100
Var(Y)= 10000
Var(X+Y)=20000
And we are interested on find the variance for the following random variable X+500+1.08Y

We have the following properties when we have a sum of random variables
If Y is a random variable:
(1)
This property is derived from the expected value of the random variable Y:
(2)
Solution to the problem
Using the (2) property we have:
![Var[X+500+1.08Y]=Var[X+1.08Y]](https://img.qammunity.org/2020/formulas/mathematics/college/87qt993v0qtg0ags9f6sukdd7jur4rx7mf.png)
And using the property (1) we have:
![Var[X+1.08Y]= 1^2 Var[X] + 1.08^2 Var[Y] +2Cov(X,Y)](https://img.qammunity.org/2020/formulas/mathematics/college/n6n9ckum229o7wavuu7asykfd5fg0089fj.png)
But we don't know the covariance for the two random variables so we can use the Var(X+Y) to find Cov(X,Y) like this:
![Var[X+Y]= Var[X]+Var[Y] +2Cov(X,Y)](https://img.qammunity.org/2020/formulas/mathematics/college/nzhpc9xv45kxcrw44pr4u1fgmeef4fbviw.png)
Solving for Cov(X,Y) we got:
![2Cov(X,Y)=Var[X+Y] -Var[X] -Var[Y]](https://img.qammunity.org/2020/formulas/mathematics/college/c3pfvxigqnfvye61yinsgjiyx8w8znmfxu.png)

And then we can use this in order to find Var[X+500+1.08Y] like this:
![Var[X+500+1.08Y]=Var[X+1.08Y]= 1^2 (8100) + 1.08^2 (10000) +2(950)=21664](https://img.qammunity.org/2020/formulas/mathematics/college/dr44y75cs3y8zegwmbrip7ojv1qvb69xd9.png)