Answer:
1 ) sin 165°
2 ) cos 330°
3 ) Tan 157.5°
4 )
![sin^2 157.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/wggj7y362d9b8ufmepcdmuzabisjnliizm.png)
Explanation:
1 )
Given expression is
![\sqrt{(1-cos330)/(2) }](https://img.qammunity.org/2020/formulas/mathematics/high-school/si1868zgyhhsr1atcxdk8zr6qph268i9iq.png)
We know that
![cos2x=1-2sinx^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/unz8gqm43bwrzjvsusjg1odxe4iolsei5r.png)
![sinx^(2)=(1-cos2x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q9bwvqthwr3q4p8pxc4ukjdukfyourgg63.png)
![(sinx/2)^2=(1-cosx)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tcfv580nf5wekjgnhzuaud5xqr1b5dh7n8.png)
So the first expression is sin (330/2)° =sin 165°
2 )
GIven expression is
![1-2sin^2165](https://img.qammunity.org/2020/formulas/mathematics/high-school/i980gtkt5utnp4aiilc2qnk5lk5a43um3g.png)
We know that
![cos2x=1-2sinx^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/unz8gqm43bwrzjvsusjg1odxe4iolsei5r.png)
So the result is cos 330°
3 )
Given expression is
![(1-cos 315)/(sin315)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zi9pc3worthz2r85qec42xcaitgb4wxhxs.png)
We know that
![cos2x=1-2sinx^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/unz8gqm43bwrzjvsusjg1odxe4iolsei5r.png)
Also we know that sin2x = 2sinxcosx
So The numerator becomes
. and the denominator becomes as
![2sinx/2cosx/2](https://img.qammunity.org/2020/formulas/mathematics/high-school/fs27fy1j15kn2lcuoout8m5rs0squ4nd6g.png)
![(2sin^2x/2)/(2sinx/2cosx/2)=tanx/2](https://img.qammunity.org/2020/formulas/mathematics/high-school/kjq8dka75hf7q7bkv6g32s04f2cbmq390h.png)
So the result is Tan 157.5°
4 )
Given expression is
![(1-cos 315)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/49qc33sw96sl4ny8bkgz38iq8u1va6vcs2.png)
We know that
![cos2x=1-2sinx^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/unz8gqm43bwrzjvsusjg1odxe4iolsei5r.png)
![(sinx/2)^2=(1-cosx)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tcfv580nf5wekjgnhzuaud5xqr1b5dh7n8.png)
So the result is
![sin^2 157.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/wggj7y362d9b8ufmepcdmuzabisjnliizm.png)