Answer:
(27)
- Velocity of salmon is 18m/s.
(28)
- Rocket's totle time in the air is 4.48 second.
- Rocket's maximum height is 33.58 meter.
- Rocket will land 91.6 meter away.
(29)
- Final velocity is 23.96m/s.
(30)
- (a) Peak height is 24.8 meter.
- (b) Initial angle is 23.45°.
- (c) Initial velocity is 55.4m/s
Step-by-step explanation:
Projectile Motion: When a body is launched in air at an angle
with the horizontal with speed
,It makes a certain trajectory in influence of gravity.
Time of flight of projectile,
![T=(2v\sin\theta)/(g)](https://img.qammunity.org/2020/formulas/physics/high-school/351n76vlyzab029y5gqxq65msq4gt3zox0.png)
Maximum height of projectile,
![H_m=(v^2\sin^2\theta)/(2g)](https://img.qammunity.org/2020/formulas/physics/high-school/ztpvh23yivxbousnb3p2mupoewncll22bd.png)
Horizontal range of projectile,
![R=(v^2\sin2\theta)/(g)](https://img.qammunity.org/2020/formulas/physics/high-school/6zxeou2zclb5zscpf7tpwbnrq3aqvtr0j3.png)
Given,
Distance of final position of salmon from base of cliff,
![D=90meter](https://img.qammunity.org/2020/formulas/physics/high-school/di6aoes296tcguaoli49anmpknpm027awk.png)
Height of cliff,
![H=122.5meter](https://img.qammunity.org/2020/formulas/physics/high-school/4ct5ivw07lf0a8oxce9espdwjhy36cibib.png)
If the salmon is launched horizontally, the vertical component of velocity
will be zero.
Using second equation of motion,
![H=v_yt-(1)/(2)gt^2 \\122.5=0-(gt^2)/(2) \\t=5second](https://img.qammunity.org/2020/formulas/physics/high-school/xyfmsep81xfwboau8e9935vodp7xa34w03.png)
Let horizontal component of velocity is
. Time taken to reach 90 meter away from base is 5 second.
So,
![v_x=(D)/(t)=(90)/(5)\\ =18second](https://img.qammunity.org/2020/formulas/physics/high-school/826bnd1i76mriq71wv2nahy21ronu11y8w.png)
Hence, Velocity,
![v=v_x+v_y=0+18\\=18m/s](https://img.qammunity.org/2020/formulas/physics/high-school/tbogix2qiem695qxtaaphlzxk4s7c53jxn.png)
Given,
Initial velocity,
![v=30m/s](https://img.qammunity.org/2020/formulas/physics/high-school/fsovky66jomqp29u88kjbxvdchr62z8wg4.png)
Angle,
![\theta=47^0](https://img.qammunity.org/2020/formulas/physics/high-school/i0m310vd139ydknsetpe44wqvy67jhunxe.png)
(a)
Totle time,
![T=(2v\sin\theta)/(g)\\=(2*30*\sin47^0)/(9.8)\\=4.48second](https://img.qammunity.org/2020/formulas/physics/high-school/dk770ce9e9geoq4o7bf2uwpf7tze8en48d.png)
So, Rocket's totle time in the air is 4.48 second.
(b)
Maximum height,
![H_m=(v^2\sin^2\theta)/(2g)\\=(30^2*\sin^247)/(2*9.8)\\33.58meter](https://img.qammunity.org/2020/formulas/physics/high-school/flfuad7btzx1ly2zq0nymemipenqfnro7c.png)
So, Rocket's maximum height is 33.58 meter.
(c)
Range,
![R=(v^2\sin2\theta)/(g)\\=(30^2\sin(2*47))/(9.8)\\ 91.6meter](https://img.qammunity.org/2020/formulas/physics/high-school/z6hj7czoi4svtzfyq1gnulzxtqsrz1fhpm.png)
So, Rocket will land 91.6 meter away.
Given,
Since, It started from rest, then initial velocity
![u=0](https://img.qammunity.org/2020/formulas/physics/high-school/r0mbxew9idep1hqzq6nwpwkdo4gxdxm8fa.png)
Acceleration,
![a=7m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/fgc0rl9tn67njrswhpbyfq1piktaez9zv5.png)
Distance traveled,
![S=41meter](https://img.qammunity.org/2020/formulas/physics/high-school/8eawok67d301u9enovoph91g03u1wuuxb3.png)
Using third equation of motion
![v^2-u^2=2as\\v=√(2as)\\=√(2*7*41)\\ =23.96m/s](https://img.qammunity.org/2020/formulas/physics/high-school/rs8feb9u7duiwua6daopjtrjdgwcx0q5yn.png)
So, Final velocity is 23.96m/s.
Given,
Range of trebuchet,
![R=225meter](https://img.qammunity.org/2020/formulas/physics/high-school/5wbtg8s0ga6s7sndo3erlsr5g9ccw63hqx.png)
Time of flight,
![T=4.5second](https://img.qammunity.org/2020/formulas/physics/high-school/1adkoav41whfaher4ul5tt58679ett2wyl.png)
Now,
![T=(2v\sin\theta)/(g) =4.5\\v\sin\theta=(4.5*9.8)/(2) =22.05\\H_m=((v\sin\theta)^2)/(2g) =(22.5^2)/(2*9.8)=24.8meter\\(R)/(H_m)=(v^2*\sin2\theta*2*9.8)/(v^2*\sin^2\theta*9.8) =(225)/(24.8) \\\cot\theta=(225)/(24.8*4) \\\theta=23.45^0\\](https://img.qammunity.org/2020/formulas/physics/high-school/wld2kd8bjgiplofvczbgv14levhr4qq1o5.png)
Put value
![\theta](https://img.qammunity.org/2020/formulas/physics/middle-school/8k0ecq9ri9io99qav1iu1870miokme4sx9.png)
![(2v\sin\theta)/(g) =4.5\\v=(4.5*9.8)/(2*\sin23.45)=55.4m/s\\](https://img.qammunity.org/2020/formulas/physics/high-school/uwxyrp0p6ygqaa1pdiiqbw3wtjytg1z8gt.png)
Hence
(a) Peak height is 24.8 meter.
(b) Initial angle is 23.45°.
(c) Initial velocity is 55.4m/s