Answer:
Step-by-step explanation:
Two important equations in radioactive decay are
![\ln (N_(0) )/(N_(t)) = kt\\\\t_{(1)/(2)} = (\ln2)/(k )](https://img.qammunity.org/2020/formulas/chemistry/college/pbfzpkemcbgzfz26ss9rkl1h702upbhfo6.png)
We use them for carbon dating.
(a) Initial activity = 0.23 Bq
(i) Calculate the rate constant
The half-life of ¹⁴C is 5730 yr.
![\begin{array}{rcl}t_{(1)/(2)}& = &(\ln2)/(k )\\\\k& = &\frac{\ln2}{t_{(1)/(2)}}\\\\ & = & \frac{\ln2}{\text{5730 yr}}\\\\ & = & 1.210 * 10^(-4)\text{ yr}^(-1)\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/college/v72ick2iupmtpcth4vrp8ipdu1vf2b0448.png)
(ii) Calculate the age of the sample
![\begin{array}{rcl}\ln (N_(0) )/(N_(t)) & = & kt\\\\\ln (0.23 )/(0.0015) & = & k* 1.210 * 10^(-4)\text{ yr}^(-1)\\\\\ln 153 & = & 1.210 * 10^(-4)k \text{ yr}^(-1)\\5.03 & = & 1.210 * 10^(-4)k \text{ yr}^(-1)\\k & = & \frac{5.03}{1.210 * 10^(-4) \text{ yr}^(-1)}\\\\ & = & \textbf{42 000 yr}\\\end{array}\\\text{The age of the sample is $\large \boxed{\textbf{42 000 yr}}$}](https://img.qammunity.org/2020/formulas/chemistry/college/lmq1z06q8e39h1x2b7dmc36f1pxdxkeu88.png)
(b) Initial activity = 45 % larger
N₀ = 1.45 × 0.230 Bq = 0.334 Bq
![\begin{array}{rcl}\ln (N_(0) )/(N_(t)) & = & kt\\\\\ln (0.334 )/(0.0015) & = & k* 1.210 * 10^(-4)\text{ yr}^(-1)\\\\\ln 222 & = & 1.210 * 10^(-4)k \text{ yr}^(-1)\\5.40 & = & 1.210 * 10^(-4)k \text{ yr}^(-1)\\k & = & \frac{5.40}{1.210 * 10^(-4) \text{ yr}^(-1)}\\\\ & = & \textbf{45 000 yr}\\\end{array}\\\text{The age of the sample is $\large \boxed{\textbf{45 000 yr}}$}](https://img.qammunity.org/2020/formulas/chemistry/college/4uoiq49fcdskhhwwtzxoi8u9z8nyg8z072.png)