Answer:
The kinetic energy of the airplane is
![128* 10^6\ J](https://img.qammunity.org/2020/formulas/chemistry/middle-school/bf2ga80e4vo4nyacm4bcm7tguf2cp9ghph.png)
Step-by-step explanation:
Given:
Mass of the airplane is,
![m=40000\ kg](https://img.qammunity.org/2020/formulas/chemistry/middle-school/urunta1vrn1vqkvoccrm8m7cki8x5zj535.png)
Velocity of the airplane is,
![v=80\ m/s](https://img.qammunity.org/2020/formulas/chemistry/middle-school/ckugg6eqq8kuv26idzm2z2pkur9zguw83u.png)
Height of airplane is,
![H=2000\ m](https://img.qammunity.org/2020/formulas/chemistry/middle-school/nsrqje1biv2lq6wyh770uyrndh6hkg6h0p.png)
Kinetic energy of a body is independent of the height and only depends on its velocity.
Kinetic energy of a body of mass 'm' and moving with a velocity 'v' is given as:
![KE=(1)/(2)mv^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qm3oiu3t5knkt2lzxpgz8n1rhs06ibh22e.png)
Where
![KE\to Kinetic\ energy](https://img.qammunity.org/2020/formulas/chemistry/middle-school/b4lfd1xztxt7rnzi3vgjpt31533oghrq4j.png)
Now, plug in 40000 kg for 'm', 80 m/s for 'v' and solve for 'KE'. This gives,
![KE=(1)/(2)* (40000\ kg)* (80\ m/s)^2\\\\KE=20000* 6400\ kg\cdot m^2/s^2\\\\KE=128* 10^6\ J.....[1\ J=1\ kg\cdot m^2/s^2]](https://img.qammunity.org/2020/formulas/chemistry/middle-school/xdlnul4j9jhd8e0n5lzn4k87a1jpceniwx.png)
Therefore, the kinetic energy of the airplane is
![128* 10^6\ J](https://img.qammunity.org/2020/formulas/chemistry/middle-school/bf2ga80e4vo4nyacm4bcm7tguf2cp9ghph.png)