Answer:
Pressure = 20 MPa
Step-by-step explanation:
Given:
Force acting on the shoe is,
![F=100\ N](https://img.qammunity.org/2020/formulas/physics/middle-school/xocxvbjv8neysz5g15rc3axrhmf5n4xwso.png)
Area of shoe on which the force acts is,
![A= 0.05\ cm^2](https://img.qammunity.org/2020/formulas/physics/middle-school/fw7irp365p7v29q72zrp5ao3cuwdqogssx.png)
Now, first we convert the area into its standard unit of m².
We have the conversion factor as:
1 cm² =
![10^(-4)\ m^2](https://img.qammunity.org/2020/formulas/physics/middle-school/3vv9nra61udqeqz9355jq5yzaep85sdm3a.png)
Therefore, the area of shoe in square meters is given as:
![A=0.05* 10^(-4)\ m^2\\A=5* 10^(-6)\ m^2](https://img.qammunity.org/2020/formulas/physics/middle-school/oo5xek2pgix0je1lkrargaztot1fhi9g9u.png)
Now, pressure on the shoe is given as:
![P=(Force)/(Area)\\P=(F)/(A)](https://img.qammunity.org/2020/formulas/physics/middle-school/1lupbl000dyse20xfjwxgn94alw5jymale.png)
Plug in 100 N for 'F',
for 'A' and solve for 'P'. This gives,
![P=(100\ N)/(5* 10^(-6)\ m^2)\\P=20* 10^(6)\ N/m^2](https://img.qammunity.org/2020/formulas/physics/middle-school/6h4j54i6lfeaoiefpgevxegb5b7rqj3e6d.png)
Now, we know that,
![10^(6)\ N/m^2=1\ MPa\\\therefore 20* 10^(6)\ N/m^2=20* 1\ MPa=20\ MPa](https://img.qammunity.org/2020/formulas/physics/middle-school/9jn86gsb8xmo2zo5ajr6zp4ebe6x0q02fd.png)
Therefore, the pressure acting on the shoe is 20 MPa.