Answer:
Step-by-step explanation:
Given
density of cylinder is
![\rho _c=713 kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/nx00o3ws4ysbt3mxiupva1mautpzyp1yc6.png)
Length of first cylinder is
![L_1=20 cm](https://img.qammunity.org/2020/formulas/physics/college/dqqnm7x919lcsk3uxge3uydmhq2r20f4f0.png)
radius
![r_1=5 cm](https://img.qammunity.org/2020/formulas/physics/college/9fyykr2czophwrnchpjh4jzjiiysm6nvoe.png)
For cylinder 2
![L_2=10 cm](https://img.qammunity.org/2020/formulas/physics/college/cvyj4fp2bm64175mmltesnqmj9hameefcb.png)
and
are the height above water
E
as object is floating so its weight must be balanced with buoyant force
![\rho _c(\pi )/(4)d_1^2L_1g=\rho _w(\pi )/(4)d_1^2(L_1-h_1)g----1](https://img.qammunity.org/2020/formulas/physics/college/xq9gqzz4p9crxvaa9ga47on64hzj7zjbpw.png)
For 2nd cylinder
![\rho _c(\pi )/(4)d_2^2L_2g=\rho _w(\pi )/(4)d_2^2(L_2-h_2)g----2](https://img.qammunity.org/2020/formulas/physics/college/wb63jlelvkeb43xe2nlwd257ct1bl7xm3r.png)
Dividing 1 and 2 we get
![(L_1)/(L_2)=(L_1-h_1)/(L_2-h_2)](https://img.qammunity.org/2020/formulas/physics/college/89lovb1h88rjhqjvjh5riggn5z2v4aq949.png)
![(20)/(10)=(20-h_1)/(10-h_2)](https://img.qammunity.org/2020/formulas/physics/college/v3fgwm2cb2i2hio9m9lbxcklmnk4rbiblc.png)
![2h_2=h_1](https://img.qammunity.org/2020/formulas/physics/college/vc4ttmtcmnehde696xnplr80m1sqxbkzgj.png)