Answer:
16, 20, 24, 28, and 32
Explanation:
Given:
The
term of the sequence is given as:
![a_n=a_(n-1)+4](https://img.qammunity.org/2020/formulas/mathematics/college/1dfruo53d9s6e3z87c60qo3f12iaa9dhpy.png)
The first term is given as
![a_1=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m33vlt6z30bok1kdrg7n9dbuyrvmm7jkhs.png)
We need to find the remaining 4 terms.
So, we plug in 2, 3, 4, 5 for 'n' and find the remaining 4 terms of the sequence.
For
![n=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/knpj848mz4k69umubg8yupyuxob6oouxfq.png)
![a_2=a_(2-1)+4\\\\a_2=a_1+4\\\\a_2=16+4=20](https://img.qammunity.org/2020/formulas/mathematics/middle-school/slbwpw4qdkqdjl37nunb0q26bcr8hb509k.png)
For
![n=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/bniwkmpbbnwkxheuhsxe8uo03pkym9d5cm.png)
![a_3=a_(3-1)+4\\\\a_3=a_2+4\\\\a_3=20+4=24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ginvpruhy2h6ji51t0fjbefp8gn0knuvw5.png)
For
![n=4](https://img.qammunity.org/2020/formulas/mathematics/college/hlsoq6x9c191crhol11i3y2q6bz506tr6a.png)
![a_4=a_(4-1)+4\\\\a_4=a_3+4\\\\a_4=24+4=28](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zwhxl9top66hl273gvugd9e1qx9ffhvp2v.png)
For
![n=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2d2jdmq7o6tn3nz9ok48m1pfvfg58a04nx.png)
![a_5=a_(5-1)+4\\\\a_5=a_4+4\\\\a_5=28+4=32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ktoqxbqwn0kzue8fye0y93jdzwvu2o7vri.png)
Therefore, the first five terms of the given sequence are:
16, 20, 24, 28, and 32