Answer: 0.0241
Explanation:
The formula we use to find the margin of error :
![E=z^*\sqrt{(p(1-p))/(n)}](https://img.qammunity.org/2020/formulas/mathematics/college/cjmbqo7ohvnm09nmpe8ma1h9wtxrbv1e7w.png)
, where z* = Critical value , n= Sample size and p = Sample proportion.
As per given , we have
n= 2400
Sample proportion of subjects showed improvement from the treatment:
![p=(720)/(2400)=0.3](https://img.qammunity.org/2020/formulas/mathematics/college/y2pehk6yirzg6h8gd1n0t3abu987wb6rij.png)
Critical value for 99% confidence = z*= 2.576 (By z-table)
Now , the margin of error for the 99% confidence interval used to estimate the population proportion. :
![E=(2.576)\sqrt{(0.3(1-0.3))/(2400)}](https://img.qammunity.org/2020/formulas/mathematics/college/8pjlszjroiis0sy5jaetx2x39crcazffh2.png)
![E=(2.576)√(0.0000875)](https://img.qammunity.org/2020/formulas/mathematics/college/8vdciwr4z9w9yxalx4luwppv48g2jp1bam.png)
![E=(2.576)(0.00935414346693)](https://img.qammunity.org/2020/formulas/mathematics/college/anucioda6pc3um25vb3q1lg0mjf0m2tksy.png)
[Round to the four decimal places]
Hence, the margin of error for the 99% confidence interval used to estimate the population proportion. =0.0241