Answer:
Option 1 and 2.
Explanation:
Consider he given inequality is
![x^2 + 12 x+35\ge0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c0twrt44auv1iio7kcg0s9d3xrtnrnyvu0.png)
Splitting the middle term we get
![x^2 +7x+5x+35\ge0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ft3b11yafgwujs3ttycdhlp3ziq0jdd95d.png)
![x(x+7)+5(x+7)\ge0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4dtb22rlkbpwm3bt10naosvtjw81unqsbz.png)
![(x+5)(x+7)\ge0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xxqoaf6omij5w5dv7j3xpeo5yybqnt1l36.png)
The related equation is
![(x+5)(x+7)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s1i5lqhf7vxnzmm2pno63do71dsue64ko3.png)
Using zero product property we get
![x+5=0\Rightarrow x=-5](https://img.qammunity.org/2020/formulas/mathematics/high-school/3zqvplk6st0ifs1ewjo3puicz1cxyq9d72.png)
![x+7=0\Rightarrow x=-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ypkjvzgmdnw7efy90p1dliv0jx46rhtluw.png)
Draw number line and mark -5 and -7 on it.
Now the three intervals are (-∞ , -7], [-7,-5] and [-5,∞).
The set of possible test points for
⇒ (-∞ , -7] → -8, -10
⇒ [-7,-5] → -6
⇒ [-5,∞) → -4, 0, 4, 6
-8,-6,-4 and -10,-6,0 satisfies the given condition.
Therefore, the correct options are 1 and 2.