94.5k views
5 votes
A linear regression model is fitted to the data x y 37.0 65.0 36.4 67.2 35.8 70.3 34.3 71.9 33.7 73.8 32.1 75.7 31.5 77.9 with x as the input variable and y as the output variable. Find βˆ0, βˆ1, and ˆσ2. Construct a 99% confidence interval for the expected value of the output variable when the input variable is equal to 35.

User Batichico
by
8.4k points

1 Answer

0 votes

Answer:

b0= 144.59

b= -2.12

Se²= 1.02

99%CI E(Y/X=35): [68.78; 71.99]

Explanation:

Hello!

I've arranged the given data:

X: 37.0, 36.4, 35.8, 34.3, 33.7, 32.1, 31.5

Y: 65.0, 67.2, 70.3, 71.9, 73.8, 75.7, 77.9

The equation of the linear regression model is:

Yi= β₀ + βXi + εi

Where

Yi is the dependent variable

Xi is the independent variable

εi represents the errors or residues

β₀ is the intercept of the line

β is the slope

The conditions to make a linear regression analysis are:

For each given value of X, there is a population of Y~N(μy;σy²)

Each value of Y is independent of the others.

The population variances of each population of Y are equal.

From these conditions the following characteristic is deduced:

εi~N(0;σ²)

The parameters of the regression are:

β₀, β, and σ²

If the conditions are met then you can estimate the regression line:

Yi= bo * bXi + ei.

And the point estimation of the parameters can be calculated using the formulas:

β₀ ⇒ b0= (∑y/n)-b(∑x/n)

β ⇒ b= [∑xy- ((∑x)(∑y))/n]/(∑x²-((∑x)²/n))

σ²⇒ Se²= 1/(n-2)*[∑y²-(∑y)²/n - b²(∑x²-(∑x)²/n)]

n= 7

∑y= 501.80

∑y²= 36097.88

∑x= 240.80

∑x²= 8310.44

∑xy= 17204.87

b0= 144.59

b= -2.12

Se²= 1.02

The estimated regression line is:

Yi= 144.59 -2.12Xi

You need to calculate a 99%CI E(Y/X=35), the formula is:

(b0 + bX0) ±
t_(n-2;1-\alpha /2)*
\sqrt{S_e^2((1)/(n)+((X_0-X[bar])^2)/(sumX^2-(((sumX)^2)/(n) )) )}

(144.59 + (-2.12*35)) ± 4.032*
\sqrt{1.02((1)/(7)+((35-34.4)^2)/(8310.44-(((240.80)^2)/(7) )) )}

[68.78; 71.99]

With a 99% confidence level youd expect that the interval [68.78; 71.99] contains the true value of the average of Y when X= 35.

I hope it helps!

User Nicolas Renon
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories