35.5k views
2 votes
Use a matrix to solve the system.

8.

2x + 6y = 38

(5x - y = 15

User Qui
by
7.5k points

1 Answer

5 votes

Answer:

x=4 and y=5

Explanation:

The given system of equations are


2x+6y=38


5x-y=15

The matrix form is


\begin{bmatrix}2&6\\ \:5&-1\end{bmatrix}\begin{bmatrix}x\\ \:y\end{bmatrix}=\begin{bmatrix}38\\ \:15\end{bmatrix}

Let as assume


A=\begin{bmatrix}2&6\\ \:5&-1\end{bmatrix}


X=\begin{bmatrix}x\\ \:y\end{bmatrix}


B=\begin{bmatrix}38\\ \:15\end{bmatrix}

then,


AX=B


X=A^(-1)B

We know that,


\begin{bmatrix}a\:&\:b\:\\ c\:&\:d\:\end{bmatrix}^(-1)=\frac{1}{\det \begin{bmatrix}a\:&\:b\:\\ c\:&\:d\:\end{bmatrix}}\begin{bmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{bmatrix}


A^(-1)=\frac{1}{\det \begin{bmatrix}2&6\\ 5&-1\end{bmatrix}}\begin{bmatrix}-1&-6\\ -5&2\end{bmatrix}


A^(-1)=(1)/(-32)\begin{bmatrix}-1&-6\\ -5&2\end{bmatrix}


X=(1)/(-32)\begin{bmatrix}-1&-6\\ -5&2\end{bmatrix}\begin{bmatrix}38\\ \:15\end{bmatrix}


X=(1)/(-32)\begin{bmatrix}\left(-1\right)\cdot \:38+\left(-6\right)\cdot \:15\\ \left(-5\right)\cdot \:38+2\cdot \:15\end{bmatrix}


X=(1)/(-32)\begin{bmatrix}-128\\ -160\end{bmatrix}


\begin{bmatrix}x\\ \:y\end{bmatrix}=\begin{bmatrix}4\\ 5\end{bmatrix}

Therefore, the value of x is 4 and value of y is 5.

User Atomless
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories