Answer:
![(√(6)-√(2))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/q93rmrw3sw2bmi6u2rjp5k9f1q4ceh3wnr.png)
Explanation:
We apply the formula
.
Note that
. Take
and
in the formula above to get
![\cos((41)/(12)\pi)=\cos(3\pi)\cos((7)/(12)\pi)-\sin(3\pi)\sin((7)/(12)\pi)=(-1)\cdot \cos((7)/(12)\pi)-0\cdot\sin((7)/(12)\pi)=-\cos((7)/(12)\pi)](https://img.qammunity.org/2020/formulas/mathematics/college/vhnf2itm0vo2r5fwbi3uynto4udsv6v8pg.png)
Then the value of this expression is
![-\cos((7)/(12)\pi)](https://img.qammunity.org/2020/formulas/mathematics/college/e07pxv2hrqdrl73ygsgyi7q2l90zc25syu.png)
We can use the cosine addition formula again to simplify further. Decompose the fraction in the argument as:
![\cos((7)/(12)\pi)=\cos(((3)/(12)+(4)/(12))\pi)=\cos(((1)/(4)\pi + (1)/(3))\pi)](https://img.qammunity.org/2020/formulas/mathematics/college/k9t8p3y6d3qkm2cpz736ul7mqk8xtgsa3d.png)
Applying the formula with
and
we obtain
![\cos((7)/(12)\pi)=\cos((1)/(4)\pi)\cos((1)/(3)\pi)-\sin((1)/(4)\pi)\sin((1)/(3)\pi)=(√(2))/(2)\cdot(1)/(2) -(√(2))/(2)\cdot(√(3))/(2)=(√(2)-√(6))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/edqh8l8rvo55dkmfvvd9mrq9zgbzt85rbq.png)
We conclude that this expression has the value
![-(√(2)-√(6))/(2)=(√(6)-√(2))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/epcrtjbqj39rcdrwv7fwihlxuezgep2r11.png)