Answer:
i) The average acceleration for the first time interval, from
to
, is
.
ii) The average acceleration for the second time interval, from
to
, is zero.
iii) The instantaneous acceleration as a function of time a(t) between 0 s and 4 s is
.
iv) The position as a function of time x(t) between 0 s and 4 s is
.
Step-by-step explanation:
We are given as data that a car that is a rest, that means v₀=0, at the origin, x₀=0, accelerates in a straight line along the +x direction. We are told that from
to
the velocity is
and that from
to
it maintains a constant velocity of
in the same direction.
i) The average acceleration is simply the rate of change of velocity, it can be expressed as:
![\bar{a}=(\vartriangle v)/(\vartriangle t) =(v_(f)-v_(0) )/(t_(f)-t_(0))](https://img.qammunity.org/2020/formulas/physics/college/qruorrr0f4ba3282fyowf65zpx55xcv2bo.png)
we have to replace the values in this equation, the only value we need to calculate is
![v(4 s)=-10(m)/(s^(2) ) 4 s + 6 (m)/(s^(3) ) (4 s)^(2)](https://img.qammunity.org/2020/formulas/physics/college/5r5u6scon64gu0gw5s0u5okq6448qjuw91.png)
![v(4 s)=-10(m)/(s^(2) ) 4 s + 6 (m)/(s^(3) ) 16 s^(2)](https://img.qammunity.org/2020/formulas/physics/college/hex1qg8rn4bb8m6s6536nwgodplct5cd8x.png)
![v(4 s)= -40 (m)/(s) + 96 (m)/(s)= 56 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/a8domz51sccnrdhye0g30y91y94ehatfv1.png)
we get that
.
Then we pur this value in the expression of the average acceleration
![\bar{a}=(\vartriangle v)/(\vartriangle t) =(v_(f)-v_(0))/(t_(f)-t_(0))=(56(m)/(s)-0(m)/(s) )/(4 s - 0 s)](https://img.qammunity.org/2020/formulas/physics/college/ii3badgdk6xxrosy7gt6bjkpxj2e28muhu.png)
the average acceleration for the first time interval is
![\bar{a}=14(m)/(s^(2) )](https://img.qammunity.org/2020/formulas/physics/college/hfnqypmgejwamxbnzyzzjf7cy5i27m9xu9.png)
ii) The average acceleration for the second time interval, from
to
, is zero because the velocity is constant. The average acceleration is the rate of change of velocity, if this magnitude remains constant then it follows that the acceleration is zero.
iii) We calculate the instantaneous acceleration, which is the acceleration at a specific moment in time, as the derivative of the velocity function.
Mathematically
![a(t)=(d v(t))/(d t )](https://img.qammunity.org/2020/formulas/physics/college/xdabq7spaooa8ctdua708lixrgtj7cecxa.png)
so we get
![a(t)=-10 (m)/(s^(2) ) + 12(m)/(s^(3) ) t](https://img.qammunity.org/2020/formulas/physics/college/yfutmwfc7lrsv3q1jg91wsmd3lg14q0ip0.png)
iv) To find the position in function of time x(t) we simply integrate the expression of v(t):
![v(t)=(d x(t))/(d t)= -10(m)/(s^(2) )t+ 6(m)/(s^(3) ) t^(2)](https://img.qammunity.org/2020/formulas/physics/college/zimdioawnlklpm9th5supw7wbylu4f60fn.png)
we get that
![x(t)=-5(m)/(s^(2) ) t^(2) + 2 (m)/(s^(3) ) t^(2)](https://img.qammunity.org/2020/formulas/physics/college/9w2px5moem1ouombzk03q1oyfw99c5n688.png)