157k views
5 votes
The area of the net the team uses is no more than 107.25 ft2. The width of the net is 3.25 feet.

Which inequality can be used to find the possible lengths of the volleyball net?

User JatinS
by
7.6k points

2 Answers

3 votes

Answer:

b

Explanation:

User Jennifer Michelle
by
8.0k points
2 votes

Answer:

The inequality is
l* (3.25)\leq 107.25

Explanation:

Given: Area of volleyball net=
107.25 ft^(2)

Width of Volleyball net=
3.25 \ ft

Considering the volleyball net is in rectangular shape and l and w is length and width respectively.

Area of rectangle=
l* w

Now, using formula to form inequality


l* (3.25)\leq 107.25

Next, using the inequality to find length of Volleyball net.


l* (3.25)\leq 107.25

Dividing both side by 3.25


l= (107.25)/(3.25) = 33\ ft

l= 33 ft

The possible length of Volleyball net is 33 ft.

User TreffnonX
by
9.2k points

No related questions found