185k views
0 votes
When consumers apply for credit, their credit is rated using FICO (Fair, Isaac, and Company) scores. Credit ratings are given below for a sample of applicants for car loans.

661 595 548 730 791 678 672 491 492 583 762 624 769 729 734 706

a. Use the sample data to construct a 99% confidence interval for the mean FICO score of all applicants for credit.
b. If one bank requires a credit rating of at least 620 for a car loan, does it appear that almost all applicants will have suitable credit ratings? Why or why not?

1 Answer

1 vote

Answer:

a) The 99% confidence interval would be given by (589.588;731.038)

b) If we see the confidence interval the 620 is included on the interval we don't have enough evidence to reject the rating is 620. But since we need a score that at least 620 and our lower limit is 589.588 we cant conclude that all the clients would have a score that at least of 620.

Explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The data is:

661 595 548 730 791 678 672 491 492 583 762 624 769 729 734 706

Part a

Compute the sample mean and sample standard deviation.

In order to calculate the mean and the sample deviation we need to have on mind the following formulas:


\bar X= \sum_(i=1)^n (x_i)/(n)


s=\sqrt{(\sum_(i=1)^n (x_i-\bar X))/(n-1)}

=AVERAGE(661, 595, 548, 730, 791, 678, 672, 491 ,492, 583, 762 ,624 ,769, 729, 734, 706)

On this case the average is
\bar X= 660.313

=STDEV.S(661, 595, 548, 730, 791, 678, 672, 491 ,492, 583, 762 ,624 ,769, 729, 734, 706)

The sample standard deviation obtained was s=95.898

Find the critical value t* Use the formula for a CI to find upper and lower endpoints

In order to find the critical value we need to take in count that our sample size n =16<30 and on this case we don't know about the population standard deviation, so on this case we need to use the t distribution. Since our interval is at 99% of confidence, our significance level would be given by
\alpha=1-0.99=0.01 and
\alpha/2 =0.005. The degrees of freedom are given by:


df=n-1=16-1=15

We can find the critical values in excel using the following formulas:

"=T.INV(0.005,15)" for
t_(\alpha/2)=-2.95

"=T.INV(1-0.005,15)" for
t_(1-\alpha/2)=2.95

The confidence interval for the mean is given by the following formula:


\bar X \pm t_(\alpha/2)(s)/(√(n))

And if we find the limits we got:


660.313- 2.95(95.898)/(√(16))=589.588

[tex]660.313+ 2.95\frac{95.898}{\sqrt{16}}=731.038/tex]

So the 99% confidence interval would be given by (589.588;731.038)

Part b

If we see the confidence interval the 620 is included on the interval we don't have enough evidence to reject the rating is 620. But since we need a score that at least 620 and our lower limit is 589.588 we cant conclude that all the clients would have a score that at least of 620.

User Schup
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories