Answer:
1.
![q=((45)/(p))^{(2)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/qld3l9x0utgowpxznhrndo1jtvn1evzcwc.png)
2.
![E_d=-(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dlup3tezlhil8gr15114sexm5drlpg4ffr.png)
Explanation:
The given demand equation is
![p=(45)/(q^(1.5))](https://img.qammunity.org/2020/formulas/mathematics/high-school/mjpvweg1i4vhmk1yhnvi7yw57lw1zfgahw.png)
where p is the price (in dollars) per quarter-chicken serving and q is the number of quarter-chicken servings that can be sold per hour at this price.
Part 1 :
We need to Express q as a function of p.
The given equation can be rewritten as
![q^(1.5)=(45)/(p)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kpctkaiylf4wzkyh3cnhycnbzd6p54pf4e.png)
Using the properties of exponent, we get
![[\because x^n=a\Rightarrow x=a^{(1)/(n)}]](https://img.qammunity.org/2020/formulas/mathematics/high-school/81bwxq6keq2exbkx6dx6nqjfbloj9f6agl.png)
![q=((45)/(p))^{(2)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/qld3l9x0utgowpxznhrndo1jtvn1evzcwc.png)
Therefore, the required equation is
.
Part 2 :
![q=(45)^{(2)/(3)}p^{-(2)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/14ji4uno67is72g92uka9rj4wdneiu9hw8.png)
Differentiate q with respect to p.
![(dq)/(dp)=(45)^{(2)/(3)}(-(2)/(3))(p^{-(2)/(3)-1}})](https://img.qammunity.org/2020/formulas/mathematics/high-school/j8bayr5nz4zrbewe8ud3hpafjdnjn18okx.png)
![(dq)/(dp)=(45)^{(2)/(3)}(-(2)/(3))(p^{-(5)/(3)})](https://img.qammunity.org/2020/formulas/mathematics/high-school/dr0ja2f1p81px9jrevn2kulsj6rqeaqt1m.png)
![(dq)/(dp)=(45)^{(2)/(3)}(-(2)/(3))(\frac{1}{p^{(5)/(3)}})](https://img.qammunity.org/2020/formulas/mathematics/high-school/yjc3do1zjlbuy18z3dusbenjvjxq48rn50.png)
Formula for price elasticity of demand is
![E_d=(dq)/(dp)* (p)/(q)](https://img.qammunity.org/2020/formulas/mathematics/high-school/frqvsqyy0hlpcsatrlhkpmcs0dels8b13e.png)
![E_d=(45)^{(2)/(3)}(-(2)/(3))(\frac{1}{p^{(5)/(3)}})* \frac{p}{(45)^{(2)/(3)}p^{-(2)/(3)}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/o127h2x7f765egbx00mbn6occj17q1chs9.png)
Cancel out common factors.
![E_d=(-(2)/(3))(\frac{1}{p^{(5)/(3)}})* \frac{p}{p^{-(2)/(3)}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/1wdgcp0ulc773q47ikcoileu1w3fptx80o.png)
Using the properties of exponents we get
![E_d=-(2)/(3)(p^{-(5)/(3)+1-(-(2)/(3))})](https://img.qammunity.org/2020/formulas/mathematics/high-school/xalmr0ebusy6qlnb2x2sub50p95g0bd6lx.png)
![E_d=-(2)/(3)(p^(0))](https://img.qammunity.org/2020/formulas/mathematics/high-school/m9c5yha2enafmifohdt3bpicyrcj04u7en.png)
![E_d=-(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dlup3tezlhil8gr15114sexm5drlpg4ffr.png)
Therefore, the price elasticity of demand is -2/3.