Answer:
Therefore,
![x=y= 4√(2)=5.6568\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p7fzo0m4zl4804gi1xlcolno2sr3hubgy0.png)
Explanation:
Given:
Consider In Right Angle Triangle ABC
∠B = 90°
∠C = ∠A = 45°
AB = y
BC = x = adjacent side
AC = 8 = hypotenuse
To Find:
x = ?
y = ?
Solution:
In Right Angle Triangle ABC by Cosine Identity we have
![\cos C = \frac{\textrm{side adjacent to angle C}}{Hypotenuse}\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ni6v4paqcq5bp5j3nlm8ywtgqb3sumyphj.png)
substituting the above given values we get
![\cos 45 = (BC)/(AC)=(x)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lh4xlcmy9q3mzvsis9sho378tsilzggc5n.png)
![(1)/(√(2) ) =(x)/(8)\\\therefore x=(8)/(√(2) ) \\Rationalizing\ we\ get\\\therefore x=(8)/(√(2))* (√(2) )/(√(2))}\\\therefore x=4√(2)=4* 1.4142=5.6568\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e3blsidnrj7ngx5h878zmm43l6tqgryzwu.png)
As The triangle is 45 - 45 - 90
It is an Isosceles Right triangle
..... Isosceles Triangle property
![\therefore y=4√(2)=4* 1.4142=5.6568\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9jbk4k8v2ot6mrgunbdb6k8yt9hmayprew.png)
Therefore,
![x=y= 4√(2)=5.6568\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p7fzo0m4zl4804gi1xlcolno2sr3hubgy0.png)