Answer:
KE=1.366×10⁻¹⁶J or
KE=854ev
Step-by-step explanation:
single slit diffraction pattern occur where sinФ=mλ/a for m=±1,±2,±3,.......
Here λ is wavelength
The spacing between successive minima is then
Δy=
![y_(m+1)-y_(m)](https://img.qammunity.org/2020/formulas/physics/college/6oluxj5ckcfnc53ta8wkioehz5ec6b0sj3.png)
Δy=λ(L/a)
as given Δy=2.10cm, L=25cm and a=0.500nm
so for λ
λ=Δy(a/L)
![=(2.10*10^(-2)m )(((0.500*10^(-9)m))/(25*10^(-2)m) )](https://img.qammunity.org/2020/formulas/physics/college/syv51mbjbavff6lqhtzh58zk7yg7lo1fr0.png)
λ=4.2×10⁻¹¹m
The momentum of one of these electrons is then
p=h/λ
![p=(6.63*10^(-34) )/(4.2*10^(-11))\\ p=1.578*10^(-23)kgm/s](https://img.qammunity.org/2020/formulas/physics/college/akshky5hz1gsqa2d4hpb0hbb4bgbjiav1x.png)
Assuming the electron is non-relativistic, its kinetic energy is
![KE=p^(2)/2m_(e)\\ KE=((1.578*10^(-23) )^(2) )/(2(9.11*10^(-31)))\\ KE=1.366*10^(-16)J](https://img.qammunity.org/2020/formulas/physics/college/8n061wgjn7gnwue0ag0b0d9ijx8pqerrd7.png)
Convert joules into electronvolt we get
KE=854ev