To solve this problem it is necessary to apply the concept related to continuity equations and fluid pressure changes.
![A_1v_1 = A_2v_2](https://img.qammunity.org/2020/formulas/engineering/college/kdi92v7qaasswquykesaj4citwr87zdwoe.png)
Where
= Cross-sectional Area at each section
= Velocity at each section
Rearranging to find the value of the velocity at section 2 is
![v_2 = (A_1)/(A_2)v_1](https://img.qammunity.org/2020/formulas/physics/college/lkhhh2t7jckasqarw3q2gnljpokf4vhdbz.png)
![v_2 = (\pi/4 d^2_1)/(\pi/4 d^2_2)v_1](https://img.qammunity.org/2020/formulas/physics/college/z30oukg9m3vuz0q2dm9qnk81ejwvw8jnl1.png)
![v_2 = ((d_1)/(d_2))^2 v_1](https://img.qammunity.org/2020/formulas/physics/college/b3wr80t9e69fa28go8gcax3lnd2igyrafa.png)
![v_2 = ((0.98)/(0.75))^2 (10)](https://img.qammunity.org/2020/formulas/physics/college/dbf44xq1le2uzn9i3glahj6tq9ckyn5lga.png)
![v_2 = 17.0734cm/s](https://img.qammunity.org/2020/formulas/physics/college/c7uhkcubkmd4588zgrzmj068knnmveyaqy.png)
The velocity at the end is 17.07cm/s
Finally the pressure change can be expressed as:
![P_1 +(1)/(2)\rho v_1^2 = P_2 +(1)/(2) \rho v_2^2](https://img.qammunity.org/2020/formulas/physics/college/yj1uwchx4ff2cinyfe0dkcio7fu9ee1op1.png)
![P_1-P_2 = (1)/(2) \rho (v_2^2-v_1^2)](https://img.qammunity.org/2020/formulas/physics/college/epxniop21tm5nb4m5hhlqjw66r496kv2gu.png)
Replacing we have,
![\Delta P = (1)/(2) (1060) ((0.1707)^2-(0.10)^2)](https://img.qammunity.org/2020/formulas/physics/college/bdg9r4nkvhg9pd0kmwrj4jntyxnmn47smr.png)
![\Delta P = 10.14Pa](https://img.qammunity.org/2020/formulas/physics/college/5ctiufnplzgx49w8ab193bm5mvotyrl1l4.png)
Therefore the total change at pressure is 10.14Pa