Answer:
OPTION A:
, where
.
Explanation:
Given:
![$ (- 12x^4)/(x^4 + 8x^5) $](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3vei2dph3wok5z5w0o8ujcmwp3a24ycty3.png)
Taking
common outside in the denominator, we get:
![$ = (-12x^4)/((x^4)(1 + 8x)) $](https://img.qammunity.org/2020/formulas/mathematics/middle-school/go7pautuevqjedyjw0v33vrjhvi4lb6o9d.png)
will get cancelled on the numerator and denominator, we get:
![$ = (-12)/(1 + 8x) $](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t6z5ptvah1acvs2sdtptoi1ateqyq3hp5o.png)
we know that the denominator can not be zero.
That means, 1 + 8x
0.
![$ \implies 8x \\e -1 $](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kogt1417pzhq88rai7l4fgvzlokq3tu4a5.png)
![$ \implies x \\e (-1)/(8) $](https://img.qammunity.org/2020/formulas/mathematics/middle-school/re24voj9g6ys0yv8yuiknvupfqi967tfp5.png)
So, the answer is:
, where
.