83.2k views
5 votes
Simplify -12x^4/x^4+8x^5

Simplify -12x^4/x^4+8x^5-example-1

1 Answer

3 votes

Answer:

OPTION A:
$ (12)/(1 + 8x) $, where
$ x \\e - (1)/(8) $.

Explanation:

Given:
$ (- 12x^4)/(x^4 + 8x^5) $

Taking
$ x^4 $ common outside in the denominator, we get:


$ = (-12x^4)/((x^4)(1 + 8x)) $


$ x^4 $ will get cancelled on the numerator and denominator, we get:


$ = (-12)/(1 + 8x) $

we know that the denominator can not be zero.

That means, 1 + 8x
$ \\e $ 0.


$ \implies 8x \\e -1 $


$ \implies x \\e (-1)/(8) $

So, the answer is:
$ (-12)/(1 + 8x) $, where
$ x \\e (-1)/(8) $
.

User Arvil
by
5.7k points