145k views
1 vote
Solve for x in the equation 2 x squared + 3 x minus 7 = x squared + 5 x + 39.

x = negative 6 plus-or-minus StartRoot 82 EndRoot
x = negative 6 plus-or-minus 2 StartRoot 17 EndRoot
x = 1 plus-or-minus StartRoot 33 EndRoot
x = 1 plus-or-minus StartRoot 47 EndRoot

2 Answers

0 votes

Answer:

D on edge 23

Explanation:

becasue i said so

User MTT
by
5.9k points
0 votes

Answer:


\implies x=1\pm √(47)

Explanation:

We want to solve for x in
2x^2+3x-7=x^2+5x+39

You need to group and combine like terms and write in standard form:


2x^2-x^2+3x-5x-7-39=0


\imples x^2-2x-46=0

By comparing to
ax^2+bx+c=0, we a=1,b=-2 and c=-46

The solution can be obtained using the quadratic formula.


x=(-b\pm √(b^2-4ac) )/(2a)

We substitute the coefficients to get:


x=(--2\pm √((-2)^2-4*1*-46) )/(2*1)


x=(2\pm √(4+4*46) )/(2)


x=(2\pm √(4*47) )/(2)


x=(2\pm2√(47) )/(2)


\implies x=1\pm √(47)

The last choice is correct

User Johan Gorter
by
5.9k points