Final answer:
To calculate the coefficient of friction between the cheese and ice, we can use the work-energy theorem. By calculating the work done on the cheese by the friction force, we can determine the coefficient of friction. By plugging in the given values, the coefficient of friction is found to be 0.047.
Step-by-step explanation:
To find the coefficient of friction between the cheese and ice, we can use the concept of work-energy theorem. The work done on the cheese by the friction force is equal to the change in kinetic energy of the cheese. The work done by friction is given by the equation:
Work = Force x Distance
In this case, the force is the friction force and the distance is the distance the cheese slid. We can express the friction force as:
Friction Force = coefficient of friction x Normal Force
Since the cheese is in contact with the ice, the normal force exerted on the cheese is equal to its weight:
Normal Force = mass of cheese x acceleration due to gravity
Substituting the expressions for friction force and normal force into the work equation, we get:
Work = (coefficient of friction x mass of cheese x acceleration due to gravity) x distance
Since the work done is equal to the change in kinetic energy of the cheese, we have:
0.5 x mass of cheese x final velocity^2 - 0.5 x mass of cheese x initial velocity^2 = (coefficient of friction x mass of cheese x acceleration due to gravity) x distance
Simplifying the equation, we can solve for the coefficient of friction:
coefficient of friction = (0.5 x mass of cheese x (final velocity^2 - initial velocity^2)) / (mass of cheese x acceleration due to gravity x distance)
Plugging in the given values, we find that the coefficient of friction between the cheese and ice is 0.047.