Answer with explanation:
When the sample size is small (< 30) and the population standard deviation is unknown , then we use t-test.
The confidence interval for population mean will be :
(1)
, where
= sample mean
t* = Critical value (based on degree of freedom and significance level).
s= sample standard deviation
n= sample size.
As per given we have
n= 9
Degree of freedom = n-1 = 8
![\overline{x}=2.4](https://img.qammunity.org/2020/formulas/mathematics/college/dwfshmtpunvtzjtxxpa0fi741rmqk6h2s7.png)
s= 0.75
Significance level =
![\alpha=1-0.80=0.20](https://img.qammunity.org/2020/formulas/mathematics/college/aeefo0ovi7fk8p1s25gg25d1zz1ct052uo.png)
Using students' t distribution table ,
Critical value :
![t^*=t_(\alpha/2,df)=t_(0.10,8)=1.3304](https://img.qammunity.org/2020/formulas/mathematics/college/rtm5lsgxouoo3bcwynychi4mrh4hi2rb02.png)
We assume that the population is approximately normal.
Then, a 80% confidence interval for the mean waste recycled per person per day for the population of Florida will be :
(Substitute the values in (1))
![2.4\pm (1.3304)(0.75)/(2.82842712475)](https://img.qammunity.org/2020/formulas/mathematics/college/ho1hzfvaj1uom21f10hccmj5vaeerumu8p.png)
![2.4\pm (1.3304)(0.265165042945)](https://img.qammunity.org/2020/formulas/mathematics/college/5vlsrld63o9mpiq6xosa9oetdof9s2ln1o.png)
![2.4\pm 0.352775573134\approx2.4\pm0.353=(2.4-0.353,\ 2.4+0.353)=(2.047,\ 2.753)](https://img.qammunity.org/2020/formulas/mathematics/college/vbp63dovlii0yv26l8xdx4g4gsp7paanu3.png)
Hence, the 80% confidence interval for the mean waste recycled per person per day for the population of Florida. = (2.047, 2.753)