Answer:
So the correct option is C ) 58 units.
Also If we require Distance then l(AC) = √58 = 7.615 units
Explanation:
Let the Points be
point A( x₁ , y₁) ≡ ( -2 , 1)
point C( x₂ , y₂) ≡ (5 , -2)
To Find:
d(AC) = ?
Solution:
By Applying the Pythagorean Theorem to find the distance between points A and C we get
![l(AC) = \sqrt{((x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2) )}](https://img.qammunity.org/2020/formulas/mathematics/high-school/gpkumd85cjc577j1a2aijulho0kw5i7ty1.png)
Substituting A( x₁ , y₁) ≡ ( -2 , 1) and C( x₂ , y₂) ≡ (5 , -2) we get
![l(AC) = \sqrt{((5-{(-2}))^(2)+(-2-1)^(2) )}\\\\l(AC) = \sqrt{(5+2)^(2)+(-3)^(2)}\\\\l(AC) = √((49+9))\\\\l(AC) = √(58)\\\\OR\\l(AC)^(2) = 58\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/rvgu8iywnas4vm1ch3xdzne9tcxehdjh3u.png)
So the correct option is C ) 58 units.
If we require Distance then l(AC) = √58 = 7.615 units