Answer:
or
![316.62\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vcse86ah8imjcvoc7s5yd08ofjff3rpjc1.png)
Explanation:
step 1
Find the area of complete circle
The area of the circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=11\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/98xt5nvyjxvvcinl69wnbedlx7vexg7qyu.png)
substitute
![A=\pi (11)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/id2qjocxx1ixl6a9yn7gvibo90wnpl7y1e.png)
![A=121\pi\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2nccte60yxei55og3g58pfzvo1zbfkf1eq.png)
step 2
Find the area of the sector
Remember that the area of the complete circle subtends a central angle of 360 degrees
so
using proportion
Find out the area of the region by a central angle of 300 degrees
![(121\pi)/(360^o)=(x)/(300^o)\\\\x=121\pi ((300^o)/(360^o))\\\\x=(36,300)/(360)\pi\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wigtpfl93dyrmu9p9434hyhnr6zf1gkozl.png)
simplify
----> exact value
Find the approximate value
assume
![\pi =3.14](https://img.qammunity.org/2020/formulas/mathematics/high-school/595myhvi9x0vjp0b1ku7bsoelmk1x8jihg.png)
![x=(605)/(6)(3.14)=316.62\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fp4hx2b6vx6fxd3wqhvoq664vd7zoorr4t.png)