Answer:
a.
![2.69 pm](https://img.qammunity.org/2020/formulas/chemistry/middle-school/1unaev7elsy0ive9f6rh35w994efpggwyb.png)
b.
![4.42\cdot 10^(-34) m](https://img.qammunity.org/2020/formulas/chemistry/middle-school/covym4gmkeenziqcz01a5bxusp5p1cng28.png)
Step-by-step explanation:
The de Broglie wavelength can be found by the following equation:
![\lambda_(dB) = (h)/(mv)](https://img.qammunity.org/2020/formulas/chemistry/middle-school/a38fyc5bay68xfhmlbo1tp98k3fblrwi8l.png)
Here:
is the de Broglie wavelength (in m);
is the Planck's constant,
;
is mass (in kg);
![v[tex] is velocity (in m/s).</p><p>a. We need to know the mass of an electron here:</p><p>[tex]m_e=9.11\cdot10^(-31) kg](https://img.qammunity.org/2020/formulas/chemistry/middle-school/rc488bqphgs48ixolxhgnigg6utksiru7r.png)
And the speed of light:
![c = 3.00\cdot 10^8 m/s](https://img.qammunity.org/2020/formulas/chemistry/middle-school/6hk0ptd0h4u32tbt8zkzplbw819el7ifzu.png)
The fraction of the speed of light is:
![\omega = 0.90](https://img.qammunity.org/2020/formulas/chemistry/middle-school/2wtd8kkamfmctuva6sxqdgqwaf8vs2g2ll.png)
Substituting into the equation:
![\lambda_(dB) = (h)/(\omega c m_e)=(6.626\cdot10^(-34) J\cdot s)/(0.90\cdot 9.11\cdot 10^(-31) kg\cdot 3.00\cdot 10^8 m/s) = 2.69\cdot 10^(-12) m = 2.69 pm](https://img.qammunity.org/2020/formulas/chemistry/middle-school/3i8pxx7qmmia6jo7rwx6rqrduygxh601an.png)
b. Similarly, here we have:
![m_b=150 g = 0.150 kg](https://img.qammunity.org/2020/formulas/chemistry/middle-school/o1s8yv2ufzmdnrfbhlyw7tv6jysvj5qc1y.png)
And the velocity of:
![v = 10 m/s](https://img.qammunity.org/2020/formulas/chemistry/middle-school/ua5n3t3cpvxfwfnlftu9swij184adfg47a.png)
We obtain:
![\lambda_(dB)={6.626\cdot 10^(-34) J\cdot s}{0.150 kg\cdot 10 m/s} = 4.42\cdot 10^(-34) m](https://img.qammunity.org/2020/formulas/chemistry/middle-school/mm32gcqlkeov1xpuvtacgqppw6vve16a60.png)
Notice that the wavelength of a large object is smaller by a fraction of:
![(2.69\cdot 10^(-12) m)/(4.42\cdot 10^(-34) m) = 6\cdot 10^(21)](https://img.qammunity.org/2020/formulas/chemistry/middle-school/ir5kyhv0zi6im92o40w79b7nhw7fma7qzx.png)
This means the de Broglie wavelength of a macroscopic object is negligible compared to the wavelength of a microscopic object.