Answer:
Q_max = 13.97 kN; δ1 = 3.39 mm
Step-by-step explanation:
(a) To calculated the required magnitude of Q, we have:
The area of the rod AB (
)= (3.142*d^2)/4 = (3.142*0.009^2)/4 = 6.36*10^-5 m^2
Since the rod AB will be stretched permanently (i.e. elastoplastic).
The maximum force at rod AB is,
= area of the rod AB * σY = (6.36*10^-5)*(345*10^6) = 21950.8 N
Summation (
) = 0, Thus:
1.1*Q_max - 0.7*
= 0: 1.1*Q_max = 0.7*21950.8 = 15365.56
Therefore, Q_max = 15365.56/1.1 = 13968.69 N = 13.97 kN
(b) To estimate the deflection δ1 if the lever is to snap back to a horizontal position after Q is removed, we have:
= (21950.8*1.25)/(200*10^9 * 6.36*10^-5) = 0.00216 m
Ф
=
/0.7 = 0.00216/0.7 = 0.0031 m
Thus, δ1 = 1.1*0.0031 = 0.00339 m = 3.39 mm