117k views
4 votes
Calculate the ATP yield for the complete oxidation of the 16-carbon unsaturated fatty acid palmitoleic acid (a 16:1-Δ9 fatty acid). (You should consider the β-oxidation steps, processing of acetyl-CoA through the citric acid cycle, and electron transport. Production of one GTP should be considered the equivalent of production of one ATP. Enter your answer to three significant figures.) ATPs are gained for each palmitoleic acid oxidized

User Maarti
by
5.5k points

1 Answer

4 votes

Answer: Total ATP yield for the complete oxidation of the 16-carbon unsaturated fatty acid palmitoleic acid (a 16:1-Δ9 fatty acid) = 108 ATP molecules.

Note: Two ATP molecules are used in the activation of palmitoleic acid to palmitoleoyl-CoA. Therefore the net ATP yield is 106 molecules.

Step-by-step explanation:

Palmitoleic acid is a 16-carbon fatty acid. The complete oxidation of palmioleic acid yields eight acetyl-CoA molecules and 7FADH2 and &NADH2. The overall equation for the reaction is shown below

Palmiltoleoyl-CoA + 7CoA + 7 FAD + 7NAD+ + 7H2O---> 8 acetyl-CoA + 7FADH2 + 7NADH + 7H+

Each of the eight acetyl-Coa molecules enters the citric acid cycle to yield three NADH and one FADH2 which equals to; 8 * 3NADH = 24NADH and 8 * 1FADH2 = 8FADH2. Also the substrate level phosphoryation by succinyl-CoA synthetase yields 8 GTP molecules which later is converted to 8 ATP molecules.

Total FADH2 = 7 + 8 = 15FADH2

Total NADH = 7 + 24 NADH = 31 NADH

Each FADH2 and NADH enters the electron transport chain to produce 1.5 ATP and 2.5 ATP per molecule respectively.

1.5 * 15 FADH2 = 22.5 ATP molecules

2.5 * 31 NADH = 77.5 ATP molecules

Total ATP yield for the complete oxidation of the 16-carbon unsaturated fatty acid palmitoleic acid (a 16:1-Δ9 fatty acid) = 8 +22.5+77.5 = 108 ATP molecules.

Note: Two ATP molecules are used in the activation of palmitoleic acid to palmitoleoyl-CoA. Therefore the net ATP yield is 106 molecules.

User Medulla Oblongata
by
4.8k points