Answer:
4 trays should he prepared, if the owner wants a service level of at least 95%.
Explanation:
We are given the following information in the question:
Mean, μ = 5
Standard Deviation, σ = 1
We are given that the distribution of demand score is a bell shaped distribution that is a normal distribution.
Formula:

P(X > x) = 0.95
We have to find the value of x such that the probability is 0.95
P(X > x)
Calculation the value from standard normal z table, we have,
Hence, 4 trays should he prepared, if the owner wants a service level of at least 95%.