Final answer:
To calculate the net force on charge 1 due to the other two charges, we need to find the individual forces between charge 1 and the other charges and then combine them vectorially using Coulomb's law.
Step-by-step explanation:
To calculate the net force on charge 1 due to the other two charges, we need to find the individual forces between charge 1 and the other charges and then combine them vectorially. The magnitude of the force between two charges can be calculated using Coulomb's law:
F = k * (|q1| * |q2|) / (r^2)
Where F is the force, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between the charges.
Let's calculate the individual forces:
- Force between charge 1 (+7.0μC) and charge 2 (-8.0 μC) can be calculated using the formula:
F12 = k * (|q1| * |q2|) / (r^2) = k * (|7.0| * |-8.0|) / (1.20^2) - Force between charge 1 (+7.0μC) and charge 3 (-6.0 μC) can be calculated using the same formula:
F13 = k * (|q1| * |q3|) / (r^2) = k * (|7.0| * |-6.0|) / (1.20^2)
Next, we can calculate the net force on charge 1 by adding the forces vectorially:
Net Force on charge 1 = F12 + F13