100k views
4 votes
Write a polynomial function of minimum degree with real coefficients whose zeros include those listed. Write the polynomial in standard form.

5, -3, and -1 + 3i

1 Answer

2 votes

Answer:

y = x⁴ − 9x² − 50x − 150

Explanation:

Complex roots come in conjugate pairs. So if -1 + 3i is a root, then -1 − 3i is also a root.

y = (x − 5) (x + 3) (x − (-1 + 3i)) (x − (-1 − 3i))

y = (x − 5) (x + 3) (x + 1 − 3i) (x + 1 + 3i)

Distribute using FOIL (first, outer, inner, last) to get real coefficients:

y = (x − 5) (x + 3) (x² + (1 + 3i)x + (1 − 3i)x + (1 − 3i)(1 + 3i))

y = (x − 5) (x + 3) (x² + x + 3ix + x − 3ix + 1 + 3i − 3i − 9i²)

y = (x − 5) (x + 3) (x² + 2x + 1 + 9)

y = (x − 5) (x + 3) (x² + 2x + 10)

Distribute to convert from factored form to standard form:

y = (x² + 3x − 5x − 15) (x² + 2x + 10)

y = (x² − 2x − 15) (x² + 2x + 10)

y = x²(x² + 2x + 10) − 2x(x² + 2x + 10) − 15(x² + 2x + 10)

y = x⁴ + 2x³ + 10x² − 2x³ − 4x² − 20x − 15x² − 30x − 150

y = x⁴ − 9x² − 50x − 150

User Marc Wellman
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories