36.2k views
0 votes
Find all the missing dimensions when a=9, b=13, c=64°

User Dav Clark
by
6.0k points

1 Answer

3 votes

Answer:

Part 1)
c=12.14\ units

Part 2)
m\angle A=41.78^o

Part 3)
m\angle B=74.22^o

Explanation:

step 1

Find the measure of side c

Applying the law of cosines


c^2=a^2+b^2-2(a)(b)cos(C)

we have


a=9\ units\\b=13\ units\\C=64^o

substitute


c^2=9^2+13^2-2(9)(13)cos(64^o)


c^2=81+169-234cos(64^o)


c^2=250-234cos(64^o)


c^2=147.4212


c=12.14\ units

step 2

Find the measure of angle A

Applying the law of sines


(a)/(sin(A))=(c)/(sin(C))

substitute the given values


(9)/(sin(A))=(12.14)/(sin(64^o))

solve for sin(A)


sin(A)=(sin(64^o))/(12.14)(9)


sin(A)=0.6663


m\angle A=sin^(-1)(0.6663)=41.78^o

step 3

Find the measure of angle B

we know that

The sum of the interior angles in any triangle must be equal to 180 degrees

so


m\angle A+m\angle B+m\angle C=180^o

substitute the given values


41.78^o+m\angle B+64^o=180^o


m\angle B+105.78^o=180^o


m\angle B=180^o-105.78^o


m\angle B=74.22^o

User Gravis
by
4.9k points