Answer:
29.76245 rad/s², -117.80972 rad/s²
28.2743 rad/s
3.95833
Step-by-step explanation:
= Final angular velocity
= Initial angular velocity
= Angular acceleration
= Angle of rotation
t = Time taken
Equation of rotational motion
![\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=(\omega_f-\omega_i)/(t)\\\Rightarrow \alpha=(4.5* 2\pi-0)/(0.95)\\\Rightarrow \alpha=29.76245\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/d2loubp0l6p2si1wca3bov3fshj3ne5wbl.png)
Angular acceleration during speed up is 29.76245 rad/s²
![\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=(\omega_f-\omega_i)/(t)\\\Rightarrow \alpha=(0-4.5* 2\pi)/(0.24)\\\Rightarrow \alpha=-117.80972\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/z1s8cf2etfhm9mqih4jfw0b667mkia4mby.png)
Angular acceleration during spin down is -117.80972 rad/s²
Angular speed is given by
![\omega=2\pi 4.5=28.2743\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/iyn0brn9ty1ufxpp3puuv6y4r7pijthxm9.png)
Maximum angular speed reached by the flywheel is 28.2743 rad/s
![\theta=\omega_it+(1)/(2)\alpha t^2\\\Rightarrow \theta=0* t+(1)/(2)* 29.76245* 0.95^2\\\Rightarrow \theta=13.4303\ rad](https://img.qammunity.org/2020/formulas/physics/college/44ic7ijadpngr07ydjpmu0ycjhru68rbqt.png)
![\theta=\omega_it+(1)/(2)\alpha t^2\\\Rightarrow \theta=2\pi 4.5* 0.24+(1)/(2)* -117.80972* 0.24^2\\\Rightarrow \theta=3.39292\ rad](https://img.qammunity.org/2020/formulas/physics/college/jrsp4ieg22hpu3icx53jobt0cctwsa3y01.png)
The ratio would be
![(13.4303)/(3.39292)=3.95833](https://img.qammunity.org/2020/formulas/physics/college/yhis8fkher9ptqlp121nfy7umwnu5kdnnz.png)