Answer:
The minimum value of C is 20
Explanation:
we have
----> constraint 1
----> constraint 2
----> constraint 3
----> constraint 4
using a graphing tool
The solution is the shaded area
see the attached figure
To find the minimum value of C evaluate the vertices (9,2) and (12,0) of the solution area in the objective function
![C=2x+y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9gcor8d1zmbffcc48yhvum2bnxkn0tu38s.png)
so
For x=9, y=2 --->
![C=2(9)+2=20](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c5xn695azlyr6oxajhvtq67oyj3crsz354.png)
For x=12, y=0 --->
![C=2(12)+0=24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w4r9gtliy2u9xy9jorwut6ht5n7amxrdgd.png)
therefore
The minimum value of C is 20