Answer:
0.55 s
Step-by-step explanation:
We are given that
Mass of holiday ornament=
kg
Radius of hollow sphere=
m
We have to find the period of ornament.
Moment of inertia of the sphere about the pivot at the tree limb
![I=(5mR^2)/(3)](https://img.qammunity.org/2020/formulas/physics/high-school/trxwixihumbu9cnfbctm4a9m8fuv3kiuz4.png)
Time period,T=
![2\pi\sqrt{(I)/(mgR)}](https://img.qammunity.org/2020/formulas/physics/high-school/rn3wobvt4shoziqiqp5gwfz7qt8tql34cf.png)
T=
![2\pi\sqrt{(5mR^2)/(3mgR)}](https://img.qammunity.org/2020/formulas/physics/high-school/7zkkxt5b0vcv99rqpskofwv47jy1h6b9nc.png)
![T=2\pi\sqrt{(5R)/(3g)}](https://img.qammunity.org/2020/formulas/physics/high-school/peqgnza2187t4qx8kiw7p5rbxh3wrme4td.png)
g=
![9.8m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/serhnh5eiqbsyqt1ft67qqsl3ye0y6szut.png)
Substitute the values then, we get
![T=2* (22)/(7)* \sqrt{(5* 4.5* 10^(-2))/(3* 9.8)}](https://img.qammunity.org/2020/formulas/physics/high-school/8qj6656ts2sxd9i44mr2ajfcxykhpxrnyo.png)
![T=0.55 s](https://img.qammunity.org/2020/formulas/physics/high-school/st3i833nn40b0lllcp7e7lebxi6kj2dgax.png)
Hence, the time period of ornament=0.55 s