Answer:
Option A is correct
A. Neither
Explanation:
Given:
Two points are given (2, 15) and (0, 5)
Let
and
![(x_(2), y_(2))=(0,5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a1our7y33qlf7syv97nldsymbqatatgxuc.png)
The slope of the line
![m=(y_(2)- y_(1))/(x_(2)- x_(1))](https://img.qammunity.org/2020/formulas/mathematics/high-school/dmbhdmuwd9b8zkbx92txq94c0mg9r4oiz3.png)
Put all known value in above equation.
![m=(5- 15)/(0- 2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6dhhrthyk6g6xz550ac3icdcxqqf89esug.png)
![m=(-10)/(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pult08fdg803qq3pnwxbyse8tt5cnvqm6l.png)
![m=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zuusqhfuistafeer68e18d1pea3m02z051.png)
So the slope of the line
.
The equation of the is
-------------------(1)
Where m is the slope of the line and b is y-intercept of the line.
Take point (0, 5) to compute the value of b.
Put
in equation 1.
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
![5=5(0)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7j5ob7ousq3lmn43zg4ze2yqidth7ltztp.png)
![5=0+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sxb1v4hwk09b9b87vuwxj7wb8dqi6fefwe.png)
![b=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6tf6kalyeyb4t1mcuolvgib6pv5terfmvk.png)
Take point (2, 15) to compute the value of b.
Put
in equation 1.
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
![15=5(2)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dg9lhswd0anb89kcijs7fnnzmn7bu29uq5.png)
![15=10+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8uxvwfb8mzywtayyqda0tzh3ocqb9af6kc.png)
![15-10=b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nwh7vju0z9g5eqf3rewglfi9ydekq1fgig.png)
![b=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6tf6kalyeyb4t1mcuolvgib6pv5terfmvk.png)
So the equation of the line is.
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
Put m and b value in above equation.
------------(2)
![5x-y=-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8s1zezykbnv7vclg1okkg62ddn4j65479i.png)
add 10 both side in equation 2.
![y+10=5x+5+10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jeyrmtyahzbgn6j9d68agtvomkbh06jhkb.png)
![y+10=5x+15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q9w9ou0qp97vfz18zq4te3q503zvqy7t1v.png)
![y+10=5(x+3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/778cyloxvixk9t48en4ul5azqu9b0hj5c0.png)
So the equation of line that passes through the point (2,15) and (0,5) is.
or
or
![y+10=5(x+3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/778cyloxvixk9t48en4ul5azqu9b0hj5c0.png)
Therefore, Neither the following equations represents a line that passes through the points (2,15) and (0,5).