Answer:
k ≈ 9,56x10³ s⁻¹
Step-by-step explanation:
It is possible to solve this question using Arrhenius formula:
![ln(k2)/(k1) = (-Ea)/(R) ((1)/(T2) -(1)/(T1) )](https://img.qammunity.org/2020/formulas/chemistry/college/fhnbeem4bifh4q6hjascfxajc3mcf9itq4.png)
Where:
k1: 1,35x10² s⁻¹
T1: 25,0°C + 273,15 = 298,15K
Ea = 55,5 kJ/mol
R = 8,314472x10⁻³ kJ/molK
k2 : ???
T2: 95,0°C+ 273,15K = 368,15K
Solving:
![ln(k2)/(k1) = 4,257](https://img.qammunity.org/2020/formulas/chemistry/college/prwj1yrifvsiuvh1h604hwfknbatlcp1g6.png)
![(k2)/(k1) = 70,593](https://img.qammunity.org/2020/formulas/chemistry/college/s2b9k8xzl9cranj72bd4gfv8aofh8cvs58.png)
![{k2} = 9,53x10^3 s^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/lolojl6t7kutaxv7pftnu6zt0xntozlhg8.png)
k ≈ 9,56x10³ s⁻¹
I hope it helps!