111k views
5 votes
Surface integrals using an explicit description. Evaluate the surface integral \iint_{S}^{}f(x,y,z)dS using an explicit representation of the surface.

f(x,y,z) = ez; S is the plane z = 8 - x - 2y in the first octant.

1 Answer

3 votes

Parameterize
S by the vector function


\vec r(x,y)=x\,\vec\imath+y\,\vec\jmath+f(x,y)\,\vec k

so that the normal vector to
S is given by


(\partial\vec r)/(\partial x)*(\partial\vec r)/(\partial y)=\left(\vec\imath+(\partial f)/(\partial x)\,\vec k\right)*\left(\vec\jmath+(\partial f)/(\partial y)\,\vec k\right)=-(\partial f)/(\partial x)\vec\imath-(\partial f)/(\partial y)\vec\jmath+\vec k

with magnitude


\left\|(\partial\vec r)/(\partial x)*(\partial\vec r)/(\partial y)\right\|=\sqrt{\left((\partial f)/(\partial x)\right)^2+\left((\partial f)/(\partial y)\right)^2+1}

In this case, the normal vector is


(\partial\vec r)/(\partial x)*(\partial\vec r)/(\partial y)=-(\partial(8-x-2y))/(\partial x)\,\vec\imath-(\partial(8-x-2y))/(\partial y)\,\vec\jmath+\vec k=\vec\imath+2\,\vec\jmath+\vec k

with magnitude
√(1^2+2^2+1^2)=\sqrt6. The integral of
f(x,y,z)=e^z over
S is then


\displaystyle\iint_Se^z\,\mathrm d\Sigma=\sqrt6\iint_Te^(8-x-2y)\,\mathrm dy\,\mathrm dx

where
T is the region in the
x,y plane over which
S is defined. In this case, it's the triangle in the plane
z=0 which we can capture with
0\le x\le8 and
0\le y\le\frac{8-x}2, so that we have


\displaystyle\sqrt6\iint_Te^(8-x-2y)\,\mathrm dx\,\mathrm dy=\sqrt6\int_0^8\int_0^((8-x)/2)e^(8-x-2y)\,\mathrm dy\,\mathrm dx=\boxed{√(\frac32)(e^8-9)}

User Matt Bart
by
7.5k points