Answer:
= 0.0050 M
= 0.0155 M
Step-by-step explanation:
Initial moles of
= 0.072 mole
Volume of container = 3.9 L
Initial concentration of
The given balanced equilibrium reaction is,
![I_2(g)\rightleftharpoons 2I(g)](https://img.qammunity.org/2020/formulas/physics/college/jniadd1gjej4xd4jj2dy15ziiqgxos6xvz.png)
Initial conc. 0.018 M 0
At eqm. conc. (0.018-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=([I]^2)/([I_2])](https://img.qammunity.org/2020/formulas/physics/college/yi6r5e3c2s905d5l2ape3hg6vlqhb5hupz.png)
![K_c=((2x)^2)/(0.2-x)](https://img.qammunity.org/2020/formulas/physics/college/hqxeiw5np6aald2v0vpahp4z2p54lyj2k1.png)
we are given :
![K_c=1.60* 10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/qz4trhx112zgdgo577day2rzl3mb20ljco.png)
Now put all the given values in this expression, we get :
![1.60* 10^(-3)=((2x)^2)/((0.018-x))](https://img.qammunity.org/2020/formulas/physics/college/pm3u4fitmbnxvs8fpldgjhqp0aefr9tx4q.png)
![x=0.0025](https://img.qammunity.org/2020/formulas/physics/college/e2sjz02q4funs8s7gjiuc5hkfia4o7oa4y.png)
So, the concentrations for the components at equilibrium are:
![[I]=2* x=2* 0.0025=0.0050](https://img.qammunity.org/2020/formulas/physics/college/85gg6tlakhfoqegeed7wi8knhatsqeqb5g.png)
![[I_2]=0.018-x=0.018-0.0025=0.0155](https://img.qammunity.org/2020/formulas/physics/college/uy1yoz28xxehqrcwv2uhy0jyj39w2gmg1r.png)
Hence, concentrations of
and
are 0.0050 M ad 0.0155 M respectively.