13.7k views
4 votes
...............................................

...............................................-example-1

1 Answer

7 votes

Answer:

  1. OT⊥BA;T is the midpoint of BA-------Given
  2. ∠BTO and ∠ATO are right angles ---Definition of perpendicular lines
  3. ∠BTO≅∠ATO---------------------------------All right angles are congruent
  4. T is the midpoint of BA------------------ Given
  5. TA≅TB-------------------------------------------Definition of midpoint
  6. TO≅TO------------------------------------------Reflexive
  7. ΔBOT≅ΔAOT---------------------------------SAS

Explanation:

Given that
OT
BA and
T is the midpoint of
BA

As
OT
BA,


BTO and ∠
ATO are right angles (Definition of perpendicular lines)

⇒∠
BTO≅ ∠
ATO (All right angles are congruent)

T is the midpoint of
BA (given)


TA
TB (Definition of midpoint)


TO
TO (Reflexive)

Therefore, Δ
BOT≅Δ
AOT (by SAS criteria ):

conditions:


  • BT=AT(side)

  • BTO=
    ATO(angle)

  • TO=TO(side)
User Robert Pal
by
7.7k points