Answer with explanation:
The formula to find the confidence interval is given by :-
![\overline{x}\pm z^*SE.](https://img.qammunity.org/2020/formulas/mathematics/high-school/q9zpscv2jhkfawrnys8wjg5926z93imm1t.png)
, where
= Sample mean
z* = Critical value.
SE = Standard error ,
,
= Population standard deviation.
n= Sample size.
As per given , we have
n= 360
![SE=(236)/(√(360))=(236)/(18.973665961)\\\\=12.43829213\approx12.49](https://img.qammunity.org/2020/formulas/mathematics/high-school/x67o9xtdvduczitb1cxmw550wfltrbxirb.png)
We know that the critical value for 0.90 confidence interval : z* = 1.645
Then, a 0.90 confidence interval for the mean claim payment.will be :
![1510\pm (1.645)(12.49)\\\\ =1510\pm20.54605\\\\=(1510-20.54605,\ 1510+20.54605)\\\\=(1489.45395,\ 1530.54605)\approx(1489.45,\ 1530.55)](https://img.qammunity.org/2020/formulas/mathematics/high-school/h2jx4ypnwj2awqhll0zcx0m58uzstlf8xw.png)
∴ a 0.90 confidence interval for the mean claim payment. = ($1489.45,$1530.55)
We know that the critical value for 0.99 confidence interval : z* = 2.576
0.99 confidence interval for the mean claim payment will be :
![1510\pm (2.576)(12.49)\\\\ =1510\pm32.17424\\\\=(1510-32.17424,\ 1510+32.17424)\\\\=(1477.82576,\ 1542.17424)\approx(1477.83,\ 1542.17)](https://img.qammunity.org/2020/formulas/mathematics/high-school/trb06obmed8171wo50dacy0b3rzr5sq2lw.png)
∴ a 0.99 confidence interval for the mean claim payment. = ($1477.83, $1542.17)