Answer:
Image:
W"(-3,-2), X"(-1,-5), Y"(0,-4)
Explanation:
Given points:
W(2,0) , X(4,3), Y(5,2)
Transformation sequence:
![(x,y)\rightarrow(x,-y)\rightarrow(x-5,y-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/47ckzvmcyn25dnptqv5o9q2rqwugow47zh.png)
To find image after the transformation.
First transformation:
![(x,y)\rightarrow(x,-y)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3cvkyj25k5rq1jvbqslbezre6cqnvfcffl.png)
The given transformation shows reflection on x-axis.
![W(2,0)\rightarrow W'(2,0)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dh0infoqg3l999rpisnzd7pgky6a0f4tdx.png)
![X(4,3)\rightarrow X'(4,-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gpdlpfbmw3uhybl9nwucmfjc4e6cgqsbuj.png)
![Y(5,2)\rightarrow Y'(5,-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/me5en20mz0rokumv9v7jiypsoai9j44clj.png)
Second transformation:
![(x,y)\rightarrow(x-5,y-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hkdfxw65a24u9z0luttiyzqoygitcg6fli.png)
The given transformation shows translation of 5 units to the left and 2 units down.
![W'(2,0)\rightarrow W''(2-5,0-2)=(-3,-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rlzd6x8utliai66wdanxhc1op414zebitu.png)
![X'(4,-3)\rightarrow X](https://img.qammunity.org/2020/formulas/mathematics/high-school/h23vxshhuqb1t0j6g2fdng3m2iklomw4b9.png)
![Y'(5,-2)\rightarrow Y](https://img.qammunity.org/2020/formulas/mathematics/high-school/7hept14arfoy0j1798ehl8mu4ytjwt0t8m.png)
Image:
W"(-3,-2), X"(-1,-5), Y"(0,-4)