29.5k views
3 votes
Find y-intercept, x-intercept, vertical asymptote, slant asymptote, the domain and range. PLEASEEEEE 100pts !!!!!!

Find y-intercept, x-intercept, vertical asymptote, slant asymptote, the domain and-example-1
User Brea
by
8.5k points

2 Answers

2 votes

x=( − 2 + √ 7 , 0 ) , ( − 2 − √ 7 , 0 )

y=( 0 , 1 4 )

Vertical : x = - 4

Oblique :

y = − x/ 3

domain=( − ∞ , − 4 ) ∪ ( − 4 , ∞ )

range=( − ∞ , ∞ ) , y

User Bkcollection
by
7.7k points
2 votes

Answer:


\textsf{y-intercept}: \quad \left(0,(1)/(4)\right)


\textsf{x-intercepts}: \quad \left(-2+√(7),0\right) \textsf{ and }\left(-2-√(7),0\right)


\textsf{vertical asymptote}: \quad x=-4


\textsf{slant asymptote}: \quad y=-(1)/(3)x


\textsf{domain}: \quad (- \infty, -4) \cup (-4, \infty)


\textsf{range}: \quad (- \infty, \infty)

Explanation:

Given function:


f(x)=(x^2+4x-3)/(-3x-12)

y-intercept

The y-intercept is the point at which the curve crosses the y-axis.

To find the y-intercept, substitute x = 0 into the function:


\begin{aligned} \implies f(0)& =((0)^2+4(0)-3)/(-3(0)-12)\\\\ & =(-3)/(-12)\\\\ & = (1)/(4)\end{aligned}

Therefore, the y-intercept is (0, 1/4)

x-intercepts

The x-intercepts are the points where the curve crosses the x-axis.

To find the x-intercepts, set the function to zero and solve for x:


\begin{aligned} f(x) & = 0\\\\\implies (x^2+4x-3)/(-3x-12) & = 0\\\\x^2+4x-3 & = 0\end{aligned}

Solve using the quadratic formula:


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:


\implies x=(-4 \pm √(4^2-4(1)(-3)))/(2(1))


\implies x=(-4 \pm √(28))/(2)


\implies x=(-4 \pm 2√(7))/(2)


\implies x=-2\pm√(7)

Therefore, the x-intercepts are:


\left(-2+√(7),0\right) \textsf{ and }\left(-2-√(7),0\right)

Vertical Asymptote

An asymptote is a line which the curve gets infinitely close to, but never touches.

The vertical asymptote is the value of x that makes the denominator of the function zero.


\implies -3x-12=0


\implies x=4

Therefore, the vertical asymptote is x = 4

Slant Asymptote

A slant asymptote occurs when the polynomial in the numerator of a rational function is a higher degree than the polynomial in the denominator.

To find the slant asymptote, divide the numerator by the denominator:


\large \begin{array}{r}-(1)/(3)x\phantom{)))))}\\-3x-12{\overline{\smash{\big)}\,x^2+4x-3\phantom{)}}}\\\underline{-~\phantom{(}(x^2+4x)\phantom{-))}}\\-3\phantom{)}\end{array}

Therefore, the slant asymptote is:


y=-(1)/(3)x

Domain

Input values (x-values): (-∞, -4) ∪ (-4, ∞)

Range

Output values (y-values): (-∞, ∞)

User Ming Hsieh
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories