29.5k views
3 votes
Find y-intercept, x-intercept, vertical asymptote, slant asymptote, the domain and range. PLEASEEEEE 100pts !!!!!!

Find y-intercept, x-intercept, vertical asymptote, slant asymptote, the domain and-example-1
User Brea
by
8.5k points

2 Answers

2 votes

x=( − 2 + √ 7 , 0 ) , ( − 2 − √ 7 , 0 )

y=( 0 , 1 4 )

Vertical : x = - 4

Oblique :

y = − x/ 3

domain=( − ∞ , − 4 ) ∪ ( − 4 , ∞ )

range=( − ∞ , ∞ ) , y

User Bkcollection
by
7.7k points
2 votes

Answer:


\textsf{y-intercept}: \quad \left(0,(1)/(4)\right)


\textsf{x-intercepts}: \quad \left(-2+√(7),0\right) \textsf{ and }\left(-2-√(7),0\right)


\textsf{vertical asymptote}: \quad x=-4


\textsf{slant asymptote}: \quad y=-(1)/(3)x


\textsf{domain}: \quad (- \infty, -4) \cup (-4, \infty)


\textsf{range}: \quad (- \infty, \infty)

Explanation:

Given function:


f(x)=(x^2+4x-3)/(-3x-12)

y-intercept

The y-intercept is the point at which the curve crosses the y-axis.

To find the y-intercept, substitute x = 0 into the function:


\begin{aligned} \implies f(0)& =((0)^2+4(0)-3)/(-3(0)-12)\\\\ & =(-3)/(-12)\\\\ & = (1)/(4)\end{aligned}

Therefore, the y-intercept is (0, 1/4)

x-intercepts

The x-intercepts are the points where the curve crosses the x-axis.

To find the x-intercepts, set the function to zero and solve for x:


\begin{aligned} f(x) & = 0\\\\\implies (x^2+4x-3)/(-3x-12) & = 0\\\\x^2+4x-3 & = 0\end{aligned}

Solve using the quadratic formula:


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:


\implies x=(-4 \pm √(4^2-4(1)(-3)))/(2(1))


\implies x=(-4 \pm √(28))/(2)


\implies x=(-4 \pm 2√(7))/(2)


\implies x=-2\pm√(7)

Therefore, the x-intercepts are:


\left(-2+√(7),0\right) \textsf{ and }\left(-2-√(7),0\right)

Vertical Asymptote

An asymptote is a line which the curve gets infinitely close to, but never touches.

The vertical asymptote is the value of x that makes the denominator of the function zero.


\implies -3x-12=0


\implies x=4

Therefore, the vertical asymptote is x = 4

Slant Asymptote

A slant asymptote occurs when the polynomial in the numerator of a rational function is a higher degree than the polynomial in the denominator.

To find the slant asymptote, divide the numerator by the denominator:


\large \begin{array}{r}-(1)/(3)x\phantom{)))))}\\-3x-12{\overline{\smash{\big)}\,x^2+4x-3\phantom{)}}}\\\underline{-~\phantom{(}(x^2+4x)\phantom{-))}}\\-3\phantom{)}\end{array}

Therefore, the slant asymptote is:


y=-(1)/(3)x

Domain

Input values (x-values): (-∞, -4) ∪ (-4, ∞)

Range

Output values (y-values): (-∞, ∞)

User Ming Hsieh
by
8.5k points