Answer:
cos 2Ф =
![(-7)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kd7dtv4citahx6apkxqh9r0r4sevn4yase.png)
Explanation:
From the question above, we are ask to find cos 2Ф
To solve this problem, we need to first know what formula to use.
Using multiple formula;
cos 2Ф = cos²Ф - sin²Ф
since tan Ф is given as 4/3, then we need to first find sin Ф and cos Ф
tan Ф =
=
![(opp)/(adj)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qimym75st6bhw17oqbmpdfzn2oi4f840xb.png)
from the above, opposite = 4 adjacent =3
hypotenuse = ?
we need to find the hypotenuse
Let hyp = x
using Pythagoras theorem,
hyp² = opp² + adj²
= 4² + 3²
=16 + 9
= 25
hyp = √25
hyp = 5
opposite = 4 adjacent = 3 hypotenuse= 5
sinФ =
=
![(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xfv56szu341sgt4xkshjneg6z7o9hs1w3r.png)
cos Ф =
=
![(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ham59d8d32yipgtxeagz7evpc6d3yqvvcb.png)
cos 2Ф = cos²Ф - sin²Ф
=
-
![((4)/(5)) ^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k75sdno1h09d4jreec98hjn883ow5mj2o8.png)
cos 2Ф =
-
![(16)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ui8otw15ihu25psjasgo06z4gi0orrc809.png)
cos 2Ф =
![(-7)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kd7dtv4citahx6apkxqh9r0r4sevn4yase.png)