For this case we have that by definition, the slope of a line is given by:
![m = \frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cclrk8k9bxv15y05i3ra8kmqckbcx942t8.png)
Where:
and
are two points through which the line passes.
Line 1:
![(x_ {1}, y_ {1}) :( 3,2)\\(x_ {2}, y_ {2}): (- 3,2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7fdi0p7jjq2vltq997u21skytvmwhj1lir.png)
Thus, the slope is:
![m = \frac {2-2} {- 3-3} = \frac {0} {- 6} = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sp9pagfldottkh0a57931y5a5jmn8uuqlb.png)
So, the slope is 0.
Line 2:
![(x_ {1}, y_ {1}): (- 1, -1)\\(x_ {2}, y_ {2}): (- 1,3)\\m = \frac {3 - (- 1)} {- 1 - (- 1)} = \frac {3 + 1} {- 1 + 1}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2o2ke488ukphymfjub4wrue9jpjjv04dvu.png)
The slope is undefined!
Line 3:
![(x_ {1}, y_ {1}) :( 2, -3)\\(x_ {2}, y_ {2}): (- 3, -3)\\m = \frac {-3 - (- 3)} {- 3-2} = \frac {-3 + 3} {- 5} = \frac {0} {- 5} = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rpqylf2lfvifysv2g49ca9970krhzn4ju6.png)
So, the slope is 0.
Answer:
![m = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/max5vui3wxjtzg134wcni46ql5o34qqt74.png)
m undefined
![m = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/max5vui3wxjtzg134wcni46ql5o34qqt74.png)