The width of border is 1.5 feet
Solution:
Given that small garden measures 9 ft by 13 ft
A uniform border around the garden increases the total area to 192 ft square
To find: width of border
Let the width of border be "x"
Then the new measures of garden are (9 + 2x) feet and (13 + 2x) feet
The total area of garden = 192 square feet
![(9 + 2x)(13 + 2x) =192](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jonev03nvtemzxvocfk42ktgckwuj6ab5m.png)
![117 + 18x + 26x + 4x^2 = 192\\\\4x^2 + 44x - 75 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fbl45hbkqwb6o96vfxd9bfcw0b2ebo720v.png)
Let us solve the above equation by quadratic formula
![\text {For a quadratic equation } a x^(2)+b x+c=0, \text { where } a \\eq 0\\\\x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pny9ysm5fvpq1l72s0qnwmak5bf7qxqqfa.png)
Using the above formula,
For
, we have a = 4 ; b = 44 ; c = -75
Substituting the values of a = 4 ; b = 44 ; c = -75 in above quadratic formula we get,
![\begin{aligned}&x=\frac{-44 \pm \sqrt{44^(2)-4(4)(-75)}}{2 * 4}\\\\&x=(-44 \pm √(1936-1200))/(8)\\\\&x=(-44 \pm √(3136))/(8)\\\\&x=(-44 \pm 56)/(8)\end{aligned}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vswq3v1681cwy3mph8rqvms9dgcb58jwwq.png)
![\begin{aligned}&x=(-44+56)/(8) \text { or } x=(-44-56)/(8)\\\\&x=(12)/(8) \text { or } x=(-100)/(8)\\\\&x=1.5 \text { or } x=-12.5\end{aligned}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2epq81r6fdpa1sd4bzg5zenealim1rqt2s.png)
Since "x" cannot be negative,
we get x = 1.5
Thus width of border is 1.5 feet