Answer:
Table 3
X. 1,3,4,5
Y. 50,150,200,250
Explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or

Verify each table
Find the value of k for each ordered pair
If the value of k is the same for all ordered pairs, then the table represents a proportional relationship.
If the k-value is different for any of the ordered pairs, then the table does not represent a proportional relationship
Table 1
For x=2, y=6 --->
---->

For x=4, y=12 --->
---->

For x=5, y=18 --->
---->

The values of k are different
therefore
The table 1 not represent a proportional relationship
Table 2
For x=3, y=1.5 --->
---->

For x=5, y=2.5 --->
---->

For x=7, y=3 --->
---->

The values of k are different
therefore
The table 2 not represent a proportional relationship
Table 3
For x=1, y=50 --->
---->

For x=3, y=150 --->
---->

For x=4, y=200 --->
---->

For x=5, y=250 --->
---->

The values of k are the same
therefore
The table 3 represent a proportional relationship
Table 4
For x=1, y=1.5 --->
---->

For x=2, y=3 --->
---->

For x=3, y=6 --->
---->

The values of k are different
therefore
The table 4 not represent a proportional relationship