Answer: Option b.
Explanation:
Let's check each triangle with the Pythagorean Theorem:
![a^2=b^2+c^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g7lqyavlhxie81evds9kmmjv6zlmpg9yqr.png)
Where "a" is the hypotenuse (the longest side) and "b" and "c" are the legs of the right triangle.
a) Given:
![a=5\ cm\\b=3\ cm\\c=4\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/sz33f2brud02eq2zji7xpfabklncnldlfb.png)
You get:
![(5 cm)^2=(3 cm)^2+(4 cm)^2\\\\25\ cm^2=25\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ik5fo0ix707zjqe1tbrvj2hkpknj1byw5m.png)
(This is a right triangle)
b) Given:
![a=12\ ft\\b=8\ ft\\c=6\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/v1zh3z4yigb2rd3sgycqhnc6w4ghgf63w3.png)
You get:
![(12\ ft)^2=(8\ ft)^2+(6\ ft)^2\\\\144\ ft^2\\eq 100\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/h866uo00wv81pjuhughwkw2qv3jic2pip7.png)
(This is not a right triangle)
c) Given:
![a=45\ cm\\b=36\ cm\\c=27\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/hd9uaoinx7x5e1c6hqgah32khlxy4w07u3.png)
You get:
![(45\ cm)^2=(36\ cm)^2+(27\ cm)^2\\\\2,025\ cm^2=2,025\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/1l652dn2gbuldylzznjsix11kg0f426zxt.png)
(This is a right triangle)